Condensed Matter & Material Physics: Experiment

Scientists in Dalhousie's Condensed Matter and Material Physics experimental research labs are working on the materials, technologies, and devices that we will be able to use in the future to make our lives easier, healthier - and more sustainable.

Condensed matter physics is the branch dealing with the physical properties of matter in its condensed phase, while material physics considers the both the subatomic and macroscopic properties of matter. An understanding of both physics and chemistry can be helpful in this reseach area.

Research Labs

Craig Bennett (Adjunct)

Dr. Craig Bennett's research is concerned with charge-density waves in low-dimensional metals. He also studies aspects of complex metallic alloys, including shape memory alloys and quasicrystals.

Jeff Dahn

The research in Dr. Jeff Dahn's lab focuses on developing new materials for advanced lithium-ion batteries and polymer electrolyte membrane fuel cells. Such devices will be crucial in the next few years, as demand for electric vehicles and storage capacity for renewable energy (solar and wind) increases in the next decade.

Kimberley Hall

Dr. Kimberley Hall's research group uses femtosecond lasers to investigate charge and spin dynamics in semiconductor materials. The broad objective of this research is to develop new semiconductor technologies, including spintronic devices and a solid state quantum computer using semiconductor quantum dots.

Kevin Hewitt

Imagine being able to simultaneously and uniquely track hundreds of molecules or proteins in a cell in three dimensions at millisecond rates. To achieve this goal, the Hewitt Group propose to combine a molecular-specific light scattering technique (Stimulated Raman spectroscopy - SRS) with the well-known three-dimensional imaging capability of holography, to create molecular holograms.

Ian Hill

In Ian Hill's research lab, students and researchers work on developing materials for new solar cell technologies, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, as well as organic light-emitting devices (OLEDs) and thin-film transistors (OTFTs). Dr. Hill's lab is one of many in the Department that is part of the Dalhousie Research in Energy, Advanced Materials and Sustainability (DREAMS) program, part of NSERC's CREATE program.

Ted Monchesky

The research focus of Dr. Ted Monchesky's group involves the integration of magnetic materials with Si (silicon) and Ge (germanium) for spintronic studies. Dr. Monchesky and his group members use molecular beam epitaxy to grow atomically thin ferromagnets, helical magnets, and ferromagnetic semiconductors, with the objective of developing new magnetic materials for next-generation spintronic technologies.

Mark Obrovac (Cross-appointed with Chemistry)

Dr. Mark Obrovac's research is in the development of practical battery chemistries based on low-cost and abundant materials, such as sodium and magnesium. This includes the synthesis and characterization of new intercalation materials, nanostructured compounds, amorphous metal alloys and non-aqueous electrolytes for use in advanced batteries.

Michael Roberston (Adjunct)

Dr. Michael Robertson's primary research interest is in developing the nanoscience framework necessary for the characterization and inter-relation of the physical, electronic and optical properties of semiconductor nanostructures. The primary experimental tools for this research are the transmission and scanning electron microscopes and, theoretically, the Beowulf parallel computing cluster.

Josef Zwanziger (Cross-appointed with Chemistry)

Dr. Josef Zwanziger and his group are doing research at the interface of the physics and chemistry of materials. They use a variety of experimental methods, including nuclear magnetic resonance, optical studies, and thermal analysis to investigate materials ranging from optical glass to concrete composites.