WHAT DO YOU WANT FROM ME?

Paul Amyotte
Department of Chemical Engineering, DalTech

This article originally appeared in Chemical Engineering Education and is reprinted with the permission of the ChE Division of ASEE 1997

It was late August and time to get ready for another term of my course Fundamentals of Chemical Engineering (mass and energy balances). The summer had passed and I had somehow managed, yet again, to avoid reorganizing my notes and preparing all the assignments, tests, and exams before the start of classes. Searching for a way to ease my guilt, I recalled the latest “Random Thoughts” article in Chemical Engineering Education. Here, I thought, was something that might help.

This paper reports what I tried and how it worked.

GETTING STARTED

In their Random Thoughts article, “Getting Started,” Felder and Brent¹ offered several suggestions for making the first class an effective beginning to a course. They covered opening formalities, tips on learning students' names, and ideas for motivating students' interests. What caught my eye were two techniques for motivating interest:

Have students anonymously write and hand in a list of things they know about the course content and questions they have about it;

and

Have students write goals for themselves

I decided to combine these ideas and

Have students anonymously write and hand in a list of goals for me; i.e., a list of things they want from me in relation to the course

I met with the students on the first day and did my usual first-day thing. This includes many of the items covered by Felder and Brent. (As an aside, I agree with these authors; their suggestions do work.) About five minutes before the end of class, I handed out one-half of a standard four-by-six-inch file card to each student. I then said something like, “Since we’re going to see one another at
least four times a week in this course, I want
to know what you expect of me. What do you
want from me?"

I expected a few quizzical looks, and I was not
disappointed. After a brief reassurance that
this did not count toward the final grade and
that I did not want them to sign their re-
sponse, the students warmed to the idea and
wrote down one or more expectations of me.
The fact that I stood by the door and collected
the cards as the students were leaving prob-
ably accounts for the 100% return rate.

RESPONSES

The responses from the 25 students enrolled
in the course contained 44 separate items. In
the analysis described in the next section, I
have considered only 41 of the expectations.
Three were somewhat outside the scope of
my expertise—although the student who
asked for a free Perry’s probably has a better
chance of being satisfied than the one who
asked for a new sportscar and a date with a
certain famous supermodel.

ANALYSIS

My first step in analyzing the responses was
to prepare a master list from the individual
file cards. Natural groupings became appar-
ent as I looked over the compilation. It seemed
that all the responses could be accommod-
dated within three broad categories:

personal • pertaining to my approach to students
and teaching

subject • pertaining to my knowledge of the course
material

instructor • pertaining to my ability to impart
the course material

There are obvious overlaps among the three
groupings. For example, if I “know my stuff”
(subject), then my chances of being a success-
ful teacher (instructor) are enhanced; one way
of enjoying success as a teacher is to create a
climate of openness and approachability (per-
sonal). Notwithstanding the potential for
overlap, it was fairly easy to slot each re-
sponse into one of the three categories. I did
this soon after compiling the master list at the
start of the term and again at the end of the
term. Only in two or three instances the
second time through did I feel compelled to
question my initial group assignment for a
particular response.

Table 1 gives a sample of the comments and
shows the range of response. The actual
student comments are given after the head-
ing “Works,” according to the personal, sub-
ject, and instructor categories. After the head-
ing “Doesn’t Work,” I have given my inter-
pretation of the inverse of each student com-
ment. This further classification according to
what works and what doesn’t work comes
from the paper by Hauser, et al.²

Diana Hauser of Johns Hopkins University
asked her students their opinions of under-
graduate engineering education. A sample
of their thoughts on what works and what
doesn’t is given in the lower part of Table 1
(Reference 2 should be consulted for the full
list of student comments). Here, I have taken
the liberty of applying the personal, subject,
and instructor categories to the items selected
from Hauser, et al. (Admittedly, the classifi-
cation of testing under “personal” may seem
somewhat strained. I would argue, however,
that this is justified because one’s approach to
testing is certainly part of one’s approach to
teaching, and testing has a lot to do with a
student’s perception of fairness.) There are
obvious similarities between the current find-
ings and those of Hauser, et al.

In the current work the breakdown of all the
responses was about 40% for each of the
personal and instructor categories, and about
20% for the subject category. My emphasis
here, however, is not on the quantitative na-
ture of the responses. First, I clearly don’t have enough data to make claims that are grounded in solid mathematical theory. And second, others viewing the entire list of responses might group them differently, perhaps using different categories. For example, a report by the Education Commission of the States,\(^3\) indicates that university students are concerned about specific items such as skills, access to faculty, and hands-on learning experiences (among other things). These concerns could form the basis for analyzing the student responses, as could probably dozens of other possible classification schemes. No matter how the responses are grouped, however, qualitatively the implications will be the same.

IMPLICATIONS

To me, the obvious implication of the preceding analysis is

Effective teaching is a blend of content, delivery, and attitude;

Not only is the message important, but so are the manner in which the message is delivered and the attitude of the conveyor of the message.

This is hardly earth-shattering news to anyone involved in engineering education, or to anyone who has read even the first few pages of Wankat and Oreovicz.\(^4\) Yet it is a conclusion that bears repeating—especially in cases where one has been teaching the same course material several years running (as in my case with our mass and energy balances course). I had always assumed I knew what my students wanted (or perhaps, what they needed), but I had never asked them. I found the exercise described in the paper a useful “gut check.”

I also found that the student responses helped me better understand the rationale for some of the questions on our university’s course evaluation form. This form has the usual assortment of questions relating to course

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Sample Responses from Current Work and from Hauser, et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td></td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td>Subject</td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td></td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td>Instructor</td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td></td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td>Hauser, et al.</td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td>Subject</td>
<td>Works Doesn’t Work</td>
</tr>
<tr>
<td>Instructor</td>
<td>Works Doesn’t Work</td>
</tr>
</tbody>
</table>
content (e.g., The course follows the course outline? ... increases understanding of the subject? ... has a reasonable workload?), and relating to the instructor (e.g., The instructor ... presents materials in a well-organized manner? ... communicates enthusiasm and interest in the subject? ... speaks comprehensibly?). Other instructor-related questions correspond to the “personal” category described earlier (e.g., The instructor ... is available for out-of-class consultation? ... treats students with respect? ... encourages students to ask questions and express opinions?).

A final implication of what I have described is that the things we read in publications such as Chemical Engineering Education and ASEE Prism work. People report on successful techniques they have developed in the classroom and laboratory, presumably in the hope that others will try them and enjoy similar success. What I tried, after reading Felder and Brent, worked. It helped me understand what my students expected of me, and it began to open the lines of communication between us. At least I had asked what they wanted.

CONCLUDING REMARKS

This exercise was useful in reminding me of the components of good teaching as perceived by undergraduate students. They want rapport with the instructor, the right material, and instructor expertise.

Asking students what they want can be an eye-opening experience. To some it may be just plain common sense; to others it may represent more of a challenge because it’s a question that doesn’t have just one “correct” answer (a true open-ended question). I think, though, one shouldn’t ask the question if you’re not really that interested in the answers. Once a question is posed, I suspect the mind of a student quickly formulates a follow-up question: “Okay, I’ve told you what I want. Now what are you going to do about it?”

ACKNOWLEDGMENTS

I would like to thank the reviewers of the manuscript for this paper. If you see your words in the final version, please take it as a compliment. I couldn’t say it any better than you did.

REFERENCES